Solid and solution structures of ternary gold(I) complexes with triphenylphosphine and nitrogen-containing ligands

Megumu Munakata, *, a Sheng-Gang Yan, a Masahiko Maekawa, Mamoru Akiyama a and Susumu Kitagawa ^c

- ^a Department of Chemistry, Kinki University, Kowakae, Higashi-Osaka, Osaka 577, Japan
- b Research Institute for Science and Technology, Kinki University, Kowakae, Higashi-Osaka, Osaka 577, Japan
- ^c Department of Chemistry, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-03, Japan

A series of gold(I) complexes [Au(PPh₃)L]ClO₄ (L = pyridine 1a, 2,6-dimethylpyridine 1b, 2,6-di-tert-butylpyridine 1c, quinoline 1d, acridine 1e, benzo[h]quinoline 1f, naphthyridine 2a, 1,10-phenanthroline 2b, 2,2'-biquinoline 2c, di-2-pyridyl ketone 2d, di-2-pyridylamine 3a or 2-(2-pyridyl)benzimidazole 3b) were prepared by reaction of L with [Au(PPh₃)(ClO₄)] which was synthesized in situ. All complexes were characterized by IR, UV/VIS and ¹H NMR spectroscopy. The crystal and molecular structures of 1b, 2a and 3b were investigated by single-crystal X-ray diffraction techniques. The gold(I) is co-ordinated to one nitrogen atom and one phosphine atom. Detailed ¹H NMR studies suggested that linear two-co-ordinated structures persist in solution and further that all the complexes [Au(PPh₃)L]ClO₄, (2a-2d), are fluxional species in which the co-ordination site of gold(1) rapidly exchanges between two nitrogen atoms of the ligand.

A number of neutral gold(I) complexes with N-donor ligands have been reported, 1-5 whereas complexes [Au(PPh3)L]+ with N-heterocyclic ligands L are rather rare.^{6,7} To the best of our knowledge, only one such complex, [Au(PPh3)(qncd)]BF4 (qncd = quinuclidine) has been characterized by X-ray diffraction.8 By contrast to the trialkylphosphinegold(I) halides, the stability constant of the [Au(PR₃)L]⁺ complexes is generally not as large and is dependent on the properties of the nitrogen ligand. In this paper a series of triphenylphosphinegold(I) complexes with nitrogen-containing ligands is prepared and characterized to shed further light on the general principles governing the bonding properties, Scheme 1. First, the preparation of complexes 1 with pyridine and derivatives was undertaken to understand the steric effects. Complexes 2 with bidentate ligands containing two pyridine groups were prepared to explore the ligand function of site opening and closing, and 3 with ligands containing pyridine and benzimidazole or amine to study the selective co-ordination of AuI to nitrogen atoms of a multinitrogen ligand.

Results and Discussion

Solid-state studies

(a) Infrared spectroscopy. The complexes were all prepared by cleavage reaction of the chloride in [Au(PPh₃)Cl] with AgClO₄ and replacement of ClO₄ in the resulting complex [Au(PPh₃)-ClO₄] by ligand, equations (1) and (2). Preliminary character-

$$[\text{Au}(\text{PPh}_3)\text{Cl}] + \text{AgClO}_4 \longrightarrow [\text{Au}(\text{PPh}_3)(\text{ClO}_4)] + \\$$

$$AgCl(\downarrow)$$
 (1)

$$[Au(PPh_3)(ClO_4)] + L \longrightarrow [Au(PPh_3)L]ClO_4$$
 (2)

ization was done by elemental analysis. In all cases satisfactory results for C, H and N were obtained. Infrared spectra of all complexes showed the expected ligand and anion (ClO₄⁻) absorptions. The absorption of C=N of the N-ligands did not show significant changes upon complexation indicating that the interaction between gold(I) and the nitrogen ligand is not strong. The C=N absorption of 2a showed two peaks at 1602

- 1a pyridine (py)1b 2,6-dimethylpyridine
- (dmpy)

 1c 2,6-di-*tert*-butylpyridine
- (dbpy)

 1d quinoline (quin)
- 1e acridine (acr)
 1f benzo[h]quinoline (bquin)

- 2a 1,8-naphthyridine (napy)2b 1,10-phenanthroline (phen)
- ,2'-biquinoline (biq)
- 2d di-2-pyridyl ketone (dpk)

3a di-2-pyridylamine (dpa)3b 2-(2-pyridyl)benzimidazole (pbzim)

Scheme 1

and 1587 cm⁻¹; this means that only one nitrogen is coordinated to AuI, as indicated by the single-crystal X-ray analysis.

(b) Crystal structures of complexes 1b, 2a and 3b. Single crystals suitable for single-crystal X-ray analysis were obtained for complexes 1b, 2a and 3b. The structure of 1b is shown in Fig. 1 and consists of the cation [Au(PPh₃)(dmpy)]⁺ and a perchlorate anion. Selected interatomic distances and bond angles are listed in Table 1. In the cation the gold atom is linearly coordinated by PPh3 and dmpy, the P-Au-N angle being 178.8(3)°. The bond distances Au-N [2.091(13) Å] and Au-P [2.233(4) Å] are similar to those in the complexes [Au- $(PPh_3)(NMe_3)[ClO_4^7 [2.108(7) and 2.231(2) Å]$ and $[Au-(PPh_3)(qncd)]BF_4^8 [2.11(1) and 2.240(4) Å], respectively.$

The molecular structure of complex 2a is shown in Fig. 2 and the bond parameters are listed in Table 2. The distances Au-N(1) [2.093(13) Å] and Au-P [2.230(4) Å] are comparable

Table 1 Selected bond distances (Å) and angles (°) for complex 1b with estimated standard deviations (e.s.d.s) in parentheses

Au-P P-C(7) P-C(13) N-C(23) C(23)-C(25)	2.233(4) 1.813(14) 1.809(13) 1.323(22) 1.475(29)	Au-N P-C(1) N-C(19) C(19)-C(24)	2.091(3) 1.803(15) 1.328(20) 1.511(27)
P-Au-N	178.8(3)	Au-N-C(19)	119.6(11)
Au-N-C(23)	120.3(11)	N-C(19)-C(24)	119.5(19)
N-C(23)-C(25)	118.3(16)	C(19)-N-C(23)	120.1(14)
Au-P-C(1)	111.5(5)	Au-P-C(7)	113.2(5)
Au-P-C(13)	110.1(5)	C(1)-P-C(7)	107.2(6)
C(1)-P-C(13)	107.6(7)	C(7)-P-C(13)	107.0(7)

Table 2 Selected bond distances (Å) and angles (°) for complex **2a** with e.s.d.s in parentheses

Au-P	2.230(4)	Au-N(1)	2.093(13)
P-C(11)	1.807(11)	P-C(21)	1.794(18)
P-C(31)	1.786(14)	C(1)-N(1)	1.297(19)
C(8)-N(2)	1.338(18)	C(8)-N(1)	1.373(26)
P-Au-N(1)	174.3(4)	Au-P-C(11)	113.9(5)
Au-P-C(21)	112.2(5)	Au-P-C(31)	112.7(6)
C(11)-P-C(21)	105.1(9)	C(11)-P-C(31)	106.2(7)
C(21)-P-C(31)	106.2(7)	N(1)-C(8)-N(2)	116.6(14)
Au-N(1)-C(1)	120.3(14)	Au-N(1)-C(8)	119.1(8)
C(1)-N(1)-C(8)	119.1(8)	C(7)-N(2)-C(8)	117.2(15)

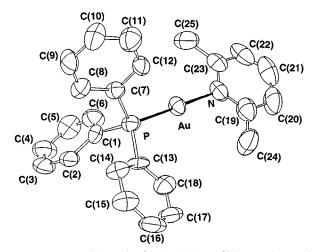


Fig. 1 Structure of the cation $[Au(PPh_3)(dmpy)]^+$ in complex 1b with hydrogen atoms omitted. The thermal ellipsoids correspond to 50% probability

with those of 1b. However, the $Au \cdots N(2)$ distance of 3.06 Å indicates no co-ordination bond and the napy ligand behaves as a monodentate ligand in 2a.

In complex 3b the most important feature is the coordination of the imidazole group to Au^I rather than the pyridine group (Fig. 3). The Au-N (imidazole) bond distance of 2.075(4) Å (Table 3) is slightly shorter than the Au-N (pyridine) distances in 1b and 2a. Thus gold(1) is more strongly coordinated to imidazole than to pyridine. The P-Au-N angles in the two-co-ordinate gold complexes 1b, 2a and 3b are not equal and deviate from linearity in the order 3b [172.4(1)] < 2a [174.3(4)] < 1a [178.8(3)°]. This is obviously related to the steric effect of the N-ligand. In fact the P-Au-N angle [179.3(2)°] in [Au(PPh₃)(NMe₃)]⁺ having a NMe₃ ligand of small steric hindrance is almost linear.

Solution studies

(a) ¹H NMR spectroscopy. Binary gold(I) complexes with N-ligands are generally unstable and become stable only when a soft ligand such as PPh₃ is also co-ordinated. For example,

Table 3 Selected bond distances (Å) and angles (°) for complex 3b with e.s.d.s in parentheses

2.238(1)	Au-N(1)	2.075(4)
1.804(6)	P-C(13)	1.817(6)
1.333(7)	P-C(25)	1.828(6)
1.388(7)	C(1)-N(2)	1.331(7)
172.4(1)	Au-P-C(13)	113.0(2)
113.1(2)	Au-P-C(25)	111.7(2)
106.1(3)	Au-N(1)-C(1)	128.7(4)
106.1(3)	C(1)-N(1)-C(2)	106.3(5)
124.9(4)	C(1)-N(2)-C(7)	108.9(5)
	1.804(6) 1.333(7) 1.388(7) 172.4(1) 113.1(2) 106.1(3) 106.1(3)	1.804(6) P-C(13) 1.333(7) P-C(25) 1.388(7) C(1)-N(2) 172.4(1) Au-P-C(13) 113.1(2) Au-P-C(25) 106.1(3) Au-N(1)-C(1) 106.1(3) C(1)-N(1)-C(2)

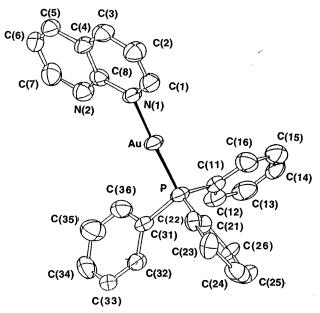


Fig. 2 Structure of the cation $[Au(PPh_3)(napy)]^+$ 2a. Details as in Fig. 1

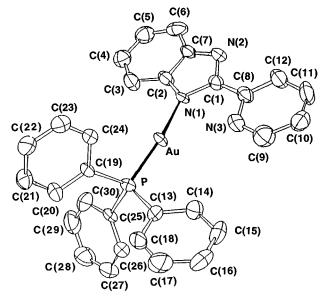
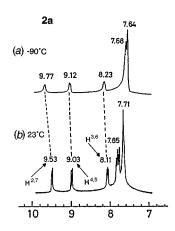


Fig. 3 Structure of the cation [Au(PPh₃)(pbzim)]⁺ in complex 3b. Details as in Fig. 1

the tertiary phosphine complexes $[Au(PR_3)(N-ligand)]^+$ (N-ligand = bipyridyl, pyrimidines, or imidazole 11) are stable, whereas chloro(piperidine)gold(I) is stable only at -20 °C and rapidly disproportionates in air. 12

The stability of these complexes is thus a reflection of the donor properties of the N-ligand both from steric and electronic effects. The ¹H NMR spectra of **1a**, **1b** and **1c** were


measured at 23 and -90 °C, respectively; the ligand structures with atom numbering are shown in Scheme 2. The resonances of both the phenyl and N-ligand protons of 1a and 1b were shifted downfield with no significant difference between 23 and -90 °C. On the other hand the complex [Au(PPh₃)(dbpy)]ClO₄ 1c at -60 °C in CDCl₃–(CD₃)₂CO (8:12 v/v) exhibits ¹H NMR resonances of both free and co-ordinated dbpy. The intensity ratio of the proton resonances indicates ca. 80% dissociation of 1c in solution. For comparison, the spectra of 1d, 1e and 1f were obtained at 23, -60 and -90 °C respectively. The ¹H NMR resonances of the p-protons of the nitrogen ligands in 1d, 1e and 1f shift downfield, and the co-ordination shifts ($\delta_{complex}$ – δ_{free}) are 0.63 (H⁴), 0.80 (H⁹) and 0.05 ppm (H⁴) at 23 °C. Large co-ordination shifts were also observed for H⁸ of 1d (0.68), $\mathrm{H}^{4,5}$ of 1e (0.96) and H^{10} of 1f (0.48 ppm) because of the hydrogen-gold interaction.

Interestingly, the ¹H NMR resonances of quinoline in complex **1d** become broader as the temperature decreases, indicating that the ligand exchange takes place in solution, equation (3). However in the case of acridine, in which the electron pair

$$[Au(PPh_3)(quin)]ClO_4 \Longrightarrow [Au(PPh_3)(ClO_4)] + quin$$
 (3)

of the nitrogen can be delocalized, no broadening of resonances for complex 1e was observed due to the related strong interaction of Au^I with acridine. For 1f a rapid ligand exchange was observed since the proton resonances of benzo[h]quinoline broadened at -60 °C, and the co-ordination shift of the p-hydrogen is much less than that of 1e, indicating that the second benzene ring in the 7,8 position has a great steric effect on the co-ordination of Au^I to the nitrogen of quinoline. From the 1H NMR studies the co-ordination shifts of 1a-1f were largest at the para position to the nitrogen of the ligand system. The stability decreases in the order 1a > 1b > 1c for the monocyclic nitrogen ligand owing to the steric hindrance in these complexes and $1e > 1d \gg 1f$ for the multiring ligands.

The co-ordination chemistry of 1,8-naphthyridine and its 2,7-methyl derivative has been extensively studied in relation to a variety of metal centers. These heterocycles are of considerable interest as ligands because they can act in bi- and monodentate manners. For example, a monodentate behavior of

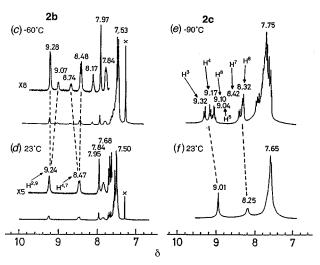


Fig. 4 Proton NMR spectra for complexes 2a, 2b and 2c at 270 MHz and 23, -60 and -90 °C (× represents the signal of CHCl₃ contained as an impurity in CDCl₃)

napy was observed in $[Hg_2(napy)_2][CIO_4]_2^{13}$ (Hg-N 2.03 Å, non-bonding distance 2.78 Å), but the phen in $[Hg_2-napy]_2$ (phen)(NO₃)₃] ¹⁴ is clearly bidentate with Hg-N 2.30 and 2.48 Å. The properties of site exchange (or fluxional behavior) of Nligands in square-planar and octahedral complexes in solution have been well studied. For example, [Cr(CO)₅(napy)],¹⁵ [Mn- $(\eta^1$ -napy) $(\eta^2$ -napy)(CO)₃]ClO₄, ¹⁶ cis-[PtCl(PPh₃)₂(napy)]BF₄ ¹⁷ and [AuMe₃(napy)]Cl ¹⁸ exhibit site exchange in solution. However, no site exchange of a linear complex has been found so far. The ¹H NMR spectrum of **2a** exhibits a downfield shift compared with free napy and basically is similar to that of complexes 1c, but the narrow resonances of H² and H⁷ at 23 °C broaden at low temperature $(-90 \, ^{\circ}\text{C})$ as shown is Fig. 4(a)and 4(b), indicating that the co-ordination site of napy rapidly exchanges in solution. The site-exchange mode is represented in Scheme 3. As reported by Kang et al., 19 the intermediate **B** is very unstable due to the unfavorable orientation of the nitrogen lone pairs of napy, when compared with that in 2,2'-bipyridine and 1,10-phenanthroline. The larger angle of Au–N(1)–C(8) for 2a also indicates that intermediate B is higher in energy, because the co-ordination of the lone-pair electron of the second nitrogen in napy to Au requires the bending of the Au-N(1)-C(8) angle (Table 2).

The H² and H⁹ NMR signals of $[Au(PPh_3)(phen)]^+$ **2b** at 23 °C in CDCl₃–(CD₃)₂CO appeared at δ 9.24 as a single resonance. Interestingly, as the temperature was decreased to –60 °C this single resonance split into two at δ 9.28 and 9.07 [Fig. 4(c) and 4(d)]. This means the site-exchange reaction also occurs in solution for **2b** through the transition state **B**. As indicated in Fig. 4(e) and 4(f), a splitting of the resonances of **2c** was also observed at –90 °C. This means that site exchange is taking place in solution and the intermediate **B** may be favorable due to the greater flexibility of the ligand biq.

As for complex **2d** with one carbonyl group between the two pyridines, the ¹H NMR resonances show a downfield shift. It would be of interest to see whether the gold(I) of **2d** is coordinated to one nitrogen of dpk in a linear geometry or to two nitrogens in a trigonal geometry, since the intermediate is six membered and the C=N solid-state IR absorption showed only one peak at 1584 cm⁻¹. Unfortunately we have no single-crystal structure data to support it.

The ¹H NMR spectrum of complex **3a** was obtained in (CD₃)₂CO–CDCl₃ (1:1) at 23 °C and showed a downfield shift. The signal of the NH proton became very weak, indicating that a bond from Au^I to NH is formed. In this case gold(i) is probably bonded only to this nitrogen atom. A slight broadening of the ¹H NMR resonances of **3b** at −90 °C in (CD₃)₂CO indicating site exchange. The resonances of all the protons of the 2-(2-pyridyl)benzimidazole show a downfield shift except that of proton H⁶ which is far from the center of co-ordination and has a 0.1 ppm upfield shift. It is worth noting that almost all of the ¹H NMR spectra discussed above show downfield shifts. This is of interest for the co-ordination chemistry of gold(i) since it was previously reported that the bonding of Au^I to nitrogen resulted in upfield shifts.²⁰

In summary, the co-ordination of gold(1) to nitrogen donor atoms in complexes 1a-1f is affected by the steric effect of substituted groups in the N ligand; the stability is in the order 1a > 1b > 1c for monoring ligands and 1e > 1d > 1f for two-ring ligands. In the solid state the favored co-ordination geometry of gold(1) complexes with PPh₃ and a N-ligand is two-co-ordinate linear. Exchange of gold(1) at nitrogen co-ordination sites in 2a-2d was found in solution. For 2b and 2c an unstrained five-membered ring transition state results in more rapid exchange of gold(1) between the two ligating nitrogens than that of the strained four-membered ring of 2a.

Experimental

Preparations were carried out using standard Schlenk techniques under an argon atmosphere. All solvents were dried by standard methods before use. The HAuCl₄·H₂O was obtained from Aldrich Chemicals and used to prepare the [Au(PPh₃)Cl] by the literature procedure.²¹ All nitrogen ligands (Wako Pure Chemical Co., Japan) were used without further purification, except for the bis(imidazol-2-yl)methane which was synthesized according to the literature.²² Infrared spectra were measured as KBr discs on a JASCO FT/IR-8000 spectrometer, and ¹H NMR spectra on JEOL FX 200 FT and GSX 270 FT spectrometers respectively. **CAUTION**: AgClO₄·H₂O is potentially explosive.

Syntheses

[Au(PPh₃)(py)]ClO₄ 1a. Chloro(triphenylphosphine)gold(i) (69.3 mg, 0.14 mmol) was dissolved in dry tetrahydrofuran (2 cm³) at 0 °C and a tetrahydrofuran (1 cm³) solution of AgClO₄ (29.0 mg, 0.14 mmol) was added. After filtration, a tetrahydrofuran (1 cm³) solution of pyridine (0.36 cm³, 4.2 mmol) was added, stirred for 30 min at 0 °C, and then transferred to a glass tube (10 mm diameter) and sealed. After standing for 2 d at 0 °C a colorless crystal was obtained (20%). IR, $\tilde{\nu}$ /cm⁻¹: 1609w (ν _{C-N}), 1444s, 1439s (ν _{P-Ph}), 1145vs, 1114vs and 1091vs (ν _{Cl-O}). ¹H NMR [23 °C (CD₃)₂CO, 200 MHz]: δ 7.40–7.71 (overlap-

ping, Ph), 8.11 (2 × 1 H, H^{3,5}), 8.49 (1 H, H⁴) and 9.17 (2 × 1 H, H^{2,6}) (Found: C, 43.21; H, 3.09; N, 2.10. Calc. for $C_{23}H_{20}Au-ClNO_4P$: C, 43.31; H, 3.16; N, 2.20%).

[Au(PPh₃)(dmpy)]ClO₄ 1b. A acetone solution (1 cm³) of AgClO₄ (24.9 mg, 0.12 mmol) was added dropwise to a stirred, cooled (0 °C) chloroform solution (3 cm³) of [Au(PPh₃)Cl] (59.4 mg, 0.12 mmol) under an argon atmosphere. The AgCl precipitated was filtered off and the colorless solution was added to 2,6-dimethylpyridine (0.14 cm³, 0.12 mmol) in chloroform (3 cm³) and stirred for 30 min at room temperature. The colorless solution of [Au(PPh₃)(ClO₄)] was sealed in a glass tube under an argon atmosphere. After standing for 3 d at 5 °C colorless crystals were obtained (60%). IR, \tilde{v} /cm⁻¹: 1580w (v_{C=N}), 1444s, 1437s (v_{P-Ph}), 1145vs, 1119vs, 1105vs and 1094vs (v_{Cl-O}). ¹H NMR [23 °C, (CD₃)₂CO, 200 MHz]: δ 3.08 (2 × 3 H, for 2,6-Me), 7.70–7.73 (overlapping, Ph), 7.76 (2 × 1 H, H³,5) and 8.14 (1 H, H⁴) (Found: C, 45.02; H, 3.58; N, 2.08. Calc. for C₂₅H₂₄AuClNO₄P: C, 45.10; H, 3.63; N, 2.10%).

[Au(PPh₃)(dbpy)]ClO₄ 1c. Colorless crystals (10%) of complex 1c were obtained in a similar procedure to that for 1b, using [Au(PPh₃)(ClO₄)] (44.67 mg, 0.08 mmol), and 2,6-di-*tert*-butylpyridine (0.18 cm³, 0.08 mmol). IR, $\tilde{\nu}$ /cm⁻¹: 1587w ($\nu_{C=N}$), 1447s, 1440s (ν_{P-Ph}), 1146vs, 1120vs, 1105vs and 1095vs (ν_{Cl-O}). ¹H NMR [-60 °C, CDCl₃-(CD₃)₂CO (80:1, v/v), 270 MHz]: δ 1.64 (6 × 3 H, for 2,6-Bu^t), 7.50–7.54 (overlapping, Ph), 7.87 (2 × 1 H, H^{3,5}) and 8.50 (1 H, H⁴) (Found: C, 48.86; H, 4.68; N, 1.84. Calc. for C₃₁H₃₆AuClNO₄P: C, 49.64; H, 4.84; N, 1.87%).

[Au(PPh₃)(quin)]ClO₄ 1d. Colorless crystals (21%) of complex 1d were obtained in a similar procedure to that for 1b, using [Au(PPh₃)(ClO₄)] (44.67 mg, 0.08 mmol) and quinoline (0.095 cm³, 0.8 mmol). IR, $\tilde{\nu}/\text{cm}^{-1}$: 1586w ($\nu_{\text{C=N}}$), 1444s, 1440s ($\nu_{\text{P-Ph}}$), 1145vs and 1091vs ($\nu_{\text{Cl-O}}$). ¹H NMR [23 °C, (CD₃)₂CO, 270 MHz]: δ 7.70–7.75 (overlapping, Ph), 7.82 (1 H, t, H³), 7.94 (1 H, t, H⁶), 8.04 (1 H, t, H⁷), 8.27 (1 H, d, H⁵), 8.73 (1 H, d, H⁸), 8.87 (1 H, d, H⁴) and 9.34 (1 H, d, H²) (Found: C, 46.89; H, 3.11; N, 2.06. Calc. for C₂₇H₂₂AuClNO₄P: C, 47.14; H, 3.22; N, 2.04%).

[Au(PPh₃)(acr)]ClO₄ 1e. Colorless crystals (50%) of complex 1e were obtained in a similar manner to that for 1b, using [Au(PPh₃)(ClO₄)] (33.51 mg, 0.06 mmol) and acridine (10.8 mg, 0.06 mmol). IR, $\tilde{\nu}$ /cm⁻¹: 1620w ($\nu_{C=N}$), 1444s, 1437s (ν_{P-Ph}), 1125vs, 1115vs, 1105vs and 1094vs (ν_{Cl-O}). ¹H NMR [23 °C, (CD₃)₂CO, 270 MHz]: δ 7.73–7.76 (overlapping, Ph), 7.90 (1 H, t, H²⁻⁷), 8.26 (1 H, t, H^{3.6}), 8.54 (1 H, d, H^{1.8}), 9.14 (1 H, d, H^{4.5}) and 9.83 (1 H, d, H⁹) (Found: C, 50.06; H, 3.17; N, 1.86. Calc. for C₃₁H₂₄AuClNO₄P: C, 50.46; H, 3.28; N, 1.90%).

[Au(PPh₃)(bquin)]ClO₄ 1f. Colorless crystals (50%) of complex 1f were obtained in a similar procedure to that for 1b, using [Au(PPh₃)(ClO₄)] (33.51 mg, 0.06 mmol) and benzo[h]quinoline (10.8 mg, 0.06 mmol). IR, \tilde{v}/cm^{-1} : 1590w ($v_{\text{C}=\text{N}}$), 1437s ($v_{\text{P}-\text{Ph}}$), 1144vs and 1090vs ($v_{\text{C}-\text{O}}$). ¹H NMR [-60 °C, CDCl₃-(CD₃)₂CO (80:1, v/v), 270 MHz]: δ 7.52–7.58 (overlapping, Ph), 7.92–8.10 (6 × 1 H, overlapping, H^{3,6,7,8,9,10}), 8.76 (1 H, d, H⁵), 9.10 (1 H, s, H⁴) and 9.29 (1 H, s, H²) (Found: C, 50.12; H, 3.36; N, 1.78. Calc. for C₃₁H₂₄AuClNO₄P: C, 50.46; H, 3.28; N, 1.90%).

[Au(PPh₃)(napy)]ClO₄ 2a. A solution of AgClO₄ (12.5 mg, 0.06 mmol) in thf (1 cm³) was added dropwise to a solution of [Au(PPh₃)Cl] (29.7 mg, 0.06 mmol) in thf (2 cm³), stirred at 0 °C for 10 min, and then the resulting solution of [Au(PPh₃)-(ClO₄)] was filtered. The filtrate was added to a solution of 1,8-naphthyridine (7.8 mg, 0.06 mmol) in thf (1 cm³), stirred for 30 min, and filtered. The colorless filtrate was transferred to a glass tube (10 mm diameter) and layered with diethyl ether (1.0 cm³) as a diffusion solvent. After standing for 5 d at 5 °C colorless

Table 4 Crystal data and structure determination parameters for complexes 1b, 2a and 3b

	1b	2a	3b
Formula	C ₂₅ H ₂₄ AuClNO ₄ P	$C_{26}H_{21}AuClN_2O_4P$	C ₃₀ H ₂₃ AuClN ₃ O ₄ P
M	665.87	688.87	752.92
Crystal system	Orthorhombic	Triclinic	Monoclinic
Space group	$P2_{1}2_{1}2_{1}$	<i>P</i> 1	$P2_1/a$
	11.431(2)	11.587(5)	10.788(4)
	19.984(8)	12.805(5)	8.373(3)
	10.845(4)	9.590(4)	31.205(3)
		93.52(5)	
		108.3(8)	98.24(2)
		67.69(4)	
	2477.4	1246.5	2789(1)
	4	2	4
	61.10	60.77	118.66
	1300.0	666.0	1472.0
	1.790	1.840	1.795
	Mo-K α (0.710 73)	Mo-K α (0.739 30)	Cu-Kα (1.541 78)
	$0.40 \times 0.20 \times 0.20$	$0.15 \times 0.20 \times 0.35$	$0.35 \times 0.40 \times 0.40$
	8	8	8
	20 (45)	2θ (45)	2θ (120)
	2639	4939	3776
	0.062	0.078	0.032
	0.066	0.090	0.045
a \mathring{l} Å b \mathring{l} Å c \mathring{l} Å d \mathring{l} d \mathring{l}	19.984(8) 10.845(4) 2477.4 4 61.10 1300.0 1.790 Mo-Ka (0.710 73) 0.40 × 0.20 × 0.20 8 20 (45) 2639 0.062	12.805(5) 9.590(4) 93.52(5) 108.3(8) 67.69(4) 1246.5 2 60.77 666.0 1.840 Mo-Κα (0.739 30) 0.15 × 0.20 × 0.35 8 20 (45) 4939 0.078	8.373(3) 31.205(3) 98.24(2) 2789(1) 4 118.66 1472.0 1.795 Cu-Kα (1.541 78) 0.35 × 0.40 × 0.40 8 20 (120) 3776 0.032

 $[|]F_{o}| = |F_{c}|/\Sigma |F_{o}|$. $|F_{c}|/\Sigma |F_{o}| = |F_{c}|/\Sigma |F_{o}|^{2}$.

brick crystals were isolated (12%). IR, $\tilde{\nu}/cm^{-1}$: 1602w ($\nu_{C=N}$), 1587w, 1445s, 1439s (ν_{P-Ph}), 1148vs, 1120vs, 1105 and 1091vs (ν_{CI-O}). ¹H NMR [23 °C, (CD₃)₂CO, 270 MHz]: δ 7.71–7.85 (overlapping, Ph), 8.11 (2 × 1 H, t, H^{3.6}), 9.03 (2 × 1 H, d, H^{4.5}) and 9.53 (2 × 1 H, d, H^{2.7}) (Found: C, 45.28; H, 3.24; N, 4.17. Calc. for C₂₆H₂₁AuClN₂O₄P: C, 45.33; H, 3.07; N, 4.07%).

[Au(PPh₃)(phen)]ClO₄ 2b. Crystals of complex 2c were obtained by pouring a solution (1 cm³) of [Au(PPh₃)(ClO₄)] $(1.6 \times 10^{-5} \text{ mol})$, prepared following the procedure as for 2a in chloroform-acetone (50:1, v/v), into a glass tube (10 mm diameter) and adding on top of it benzene (5 cm³). Then a dilute solution (1 cm³) of 1,10-phenanthroline (2.88 mg, 1.6×10^{-5} mol) in acetone was added gently to avoid possible mixing. The glass tube was sealed and after standing at room temperature for 2 weeks yellow brick crystals (21%) grew in the buffer zone. IR, \tilde{v}/cm^{-1} : 1620w ($v_{C=N}$), 1439s, 1433s (v_{P-Ph}), 1143vs, 1118vs, 1102vs and 1087vs ($\nu_{\text{CI-O}}$). ^{1}H NMR [23 $^{\circ}\text{C}$, $CDC1_3-(CD_3)_2CO$ (50:1, v/v), 270 MHz]: δ 7.48–7.52 (overlapping, Ph), 7.68-7.84 (2 × 1 H, br, $H^{3,8}$), 7.95 (2 × 1 H, s, $H^{5,6}$), 8.47 (2 × 1 H, br, $H^{4,7}$) and 9.24 (2 × 1 H, br, $H^{2,9}$) (Found: C, 48.23; H, 3.08; N, 3.63. Calc. for C₃₀H₂₃AuClN₂O₄P: C, 48.76; H, 3.14; N, 3.79%).

[Au(PPh₃)(biq)]ClO₄ 2c. 2,2'-Biquinoline (20.5 mg, 10^{-5} mol) in thf (5 cm³) was added to a solution of [Au(PPh₃)(ClO₄)] (8.0 × 10^{-5} mol) prepared as for 2a in thf (3 cm³) and stirred for 30 min. A yellow crystal of 2d was obtained by slowly evaporating the reaction mixture. IR, $\tilde{\nu}$ /cm⁻¹: 1612w ($\nu_{C=N}$), 1434m, 1431m (ν_{P-Ph}), 1095vs, 1085vs and 1082vs (ν_{Cl-O}). ¹H NMR [-90 °C, (CD₃)₂CO, 270 MHz]: δ 7.70–7.75 (overlapping, Ph), 8.32 (2 × 1 H, d, H⁶), 8.42 (2 × 1 H, t, H⁷), 9.04–9.10 (2 × 1 H, overlapping of H⁵ and H⁸), 9.17 (2 × 1 H, d, H⁴) and 9.75 (2 × 1 H, d, H³) (Found: C, 53.26; H, 3.15; N, 3.38. Calc. for C₃₆H₂₇AuClN₂O₄P: C, 53.05; H, 3.34; N, 3.44%).

[Au(PPh₃)(dpk)]ClO₄ 2d. White solids (36%) of complex 2d were obtained in a similar procedure to that for 2a, using [Au-(PPh₃)(ClO₄)] (67.02 mg, 0.12 mmol) and di-2-pyridyl ketone (22.1 mg, 0.12 mmol). IR, \tilde{v} /cm⁻¹: 1689m (v_{C=O}), 1584w (v_{C=N}), 1445s, 1439s (v_{P-Ph}), 1114vs, 1105vs and 1094vs (v_{Cl-O}). H NMR [23 °C, (CD₃)₂CO, 270 MHz]: δ 7.60–7.64 (overlapping, Ph), 7.96 (1 H, br, H⁵), 8.34–8.41 (2 × 1 H, m, H^{3,4}) and 9.01 (1 H, br, H⁶) (Found: C, 46.59; H, 3.39; N, 3.29. Calc. for C₂₉H₂₃-AuClN₂O₅P: C, 46.89; H, 3.12; N, 3.77%).

[Au(PPh₃)(dpa)]CIO₄ 3a. Di-2-pyridylamine (27.4 mg, 1.6×10^{-4} mol) in thf (5 cm³) was added to a solution of [Au-(PPh₃)ClO₄)] (1.6×10^{-4} mol) prepared as for 1a in thf (4 cm³). White precipitates were quickly formed and the colorless reaction mixture was stirred for 30 min at room temperature. The resulting yellow solution was filtered and yellow crystals (34%) were obtained by evaporating this filtrate. IR, \tilde{v}/cm^{-1} : 3064w (v_{H-N}), 1610vs, 1599m (v_{C-N}), 1441m, 1431m (v_{P-Ph}), 1105vs and 1093vs (v_{CI-O}). ¹H NMR [23 °C, (CD₃)₂CO–CDCl₃ (1:1, v/v), 270 MHz]: δ 7.09 (2 × 1 H, br, H⁵), 7.58–7.60 (overlapping of Ph with H³), 7.88 (2 × 1 H, t, H⁴), 8.34 (2 × 1 H, br, H⁶) and 9.67 (1 H, very weak, N–H) (Found: C, 46.10; H, 3.25; N, 5.68. Calc. for C₂₈H₂₄AuClN₃O₄P: C, 46.07; H, 3.31; N, 5.76%).

[Au(PPh₃)(pbzim)]ClO₄ 3b. 2-(2-Pyridyl)benzimidazole (15.6 mg, 8.0×10^{-5} mol) in chloroform (5 cm³) was added to a solution of [Au(PPh₃)(ClO₄)] (8.0×10^{-5} mol) prepared as for 1a in chloroform—acetone (1:1 v/v, 5 cm³) and stirred for 30 min at room temperature. The brown filtrate was transferred to a glass tube and layered with *n*-pentane as a diffusion solvent. After standing for 1 month at 5 °C brown crystals were isolated (26%). IR, \tilde{v} /cm⁻¹: 1595w ($v_{C=N}$), 1441m, 1439m (v_{P-Ph}), 1144vs, 1103vs (v_{Cl-O}). ¹H NMR [-90 °C, (CD₃)₂CO, 270 MHz]: δ 7.63 (1 H, H^{4,7}), 7.83 (Ph), 7.89 (1 H, H^{5'}), 7.91 (1 H, H⁵), 7.94 (1 H, H⁶), 8.32 (1 H, H^{4'}), 8.52 (1 H, H^{3'}), 8.68 (1 H, H^{6'}) and 14.68 (1 H, NH) (Found: C, 47.41; H, 3.11; N, 5.38. Calc. for C₃₀H₂₃AuClN₃O₄P: C, 47.86; H, 3.08; N, 5.58%).

Crystallography

Diffraction data for complexes 1b, 2a and 3b were obtained on a Rigaku AFC-6B four-circle diffractometer at ambient temperature. Experimental details are included in Table 4. Their structures were solved by the heavy-atom method and refined anisotropically for non-hydrogen atoms by block-diagonal least-squares calculations. Atomic scattering factors and anomalous dispersion terms were taken from ref. 23. Hydrogen atoms were included in the last cycle; their positions were obtained from Fourier-difference synthesis, and their thermal parameters were assumed to be isotropic. The final Fourier-difference maps were featureless. The calculations were carried out on the FACOM 780 computer at the Data Processing Center of Kyoto University by using the program system KPPXRAY.²⁴

CCDC reference number 186/703.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Science Research [Nos. 08231267 (priority areas) and 08454214] from the Ministry of Education, Science and Culture in Japan. We thank Kinki University for financial support (No. 9626).

References

- 1 R. Faggiani, H. E. Howard-Lock, C. J. L. Lock and M. A. Turner, Can. J. Chem., 1987, 65, 1568.
- 2 F. B. Onati, A. Burini, B. R. Pietroni and B. Bovio, J. Organomet. Chem., 1985, 296, 301.
- 3 B. C. Tzeng, D. Li, S. M. Peng and C. M. Che, J. Chem. Soc., Dalton Trans., 1993, 2365.
- 4 E. Colacio, A. Romerosa, J. Ruiz, P. Roman, J. M. Gutierrez-Zorrilla and M. Martinez-Ripoll, J. Chem. Soc., Dalton Trans., 1989, 2323.
- 5 C.-K. Chan, C.-X. Guo, K.-K. Cheng, D. Li and C.-M. Che, J. Chem. Soc., Dalton Trans., 1994, 3677.
- 6 K. Angermaier and H. Schmidbaur, J. Chem. Soc., Dalton Trans., 1995, 559.
- 7 L. Vicente, M.-T. Chicote, R. Guerrero and P. G. Jones, J. Chem. Soc., Dalton Trans., 1995, 1251.
- 8 A. Grohmann, J. Riede and H. Schmidbaur, Z. Naturforsch., Teil B, 1992, 47, 1255.
- 9 W. Clegg, Acta Crystallogr., Sect. B, 1976, 32, 2712.
- 10 T. Amagai, T. K. Miyamoto, H. Ichida and Y. Sasaki, Bull. Chem. Soc. Jpn., 1989, 62, 1078.

- 11 F. Bonati, M. Felici, B. R. Pietroni and A. Burini, Gazz. Chim. Ital., 1982, 112, 5.
- 12 J. J. Guy, P. G. Jones, M. J. Mays and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1977, 8.
- 13 J. C. Dewan, D. L. Kepert and A. H. White, J. Chem. Soc., Dalton Trans., 1975, 490.
- 14 R. C. Elder, J. Halpen and J. S. Pond, J. Am. Chem. Soc., 1976, 89,
- 15 K. R. Dixon, D. T. Eadie and S. R. Stobart, Inorg. Chem., 1982, 21, 4318.
- 16 M. J. Bermejo, J. I. Ruiz, X. Solans and J. Vinaixa, Inorg. Chem., 1988, **27**, 4385.
- 17 K. R. Dixon, Inorg. Chem., 1977, 16, 2618.
- 18 H. Schmidbaur and K. C. Dash, J. Am. Chem. Soc., 1973, 95, 4855.
- 19 S. K. Kang, T. A. Albright and C. Mealli, Inorg. Chem., 1987, 26, 3158.
- 20 S. J. B. Price, M. J. Dimartino, D. T. Hill, R. Kuroda, M. A. Mazid and P. J. Sadler, *Inorg. Chem.*, 1985, **24**, 3425. 21 B. J. Gregory and C. K. Ingold, *J. Chem. Soc. B*, 1969, 276.
- 22 A. Maisonnet, J. P. Farr, M. M. Olmsdtead, C. T. Hunt and A. L. Balch, Inorg. Chem., 1982, 21, 3961.
- 23 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
- 24 T. Taga, T. Higashi and H. Iizuka, KPPXRAY, Kyoto program for X-ray crystal structure analysis, University of Kyoto, 1985.

Received 18th July 1997; Paper 7/05177H